
Vestec Automatic Speech Recognition Engine
Standard Edition

Version 1.1.1

Grammar Developer's Guide

Vestec Automatic Speech Recognition Engine
Standard Edition
Version 1.1.1
Grammar Developer's Guide

Copyright© 2009 Voice Enabling Systems Technology, Inc. All rights reserved.

145 Columbia Street West, Suite 1, Waterloo, Ontario, Canada N2L 3L2

Information in this document is subject to change without notice and does not represent a commitment on the part of
VESTEC, Inc. The software described in this document is provided under a license agreement or nondisclosure
agreement. You may not copy, use, modify or distribute the software without the express written permission of Vestec,
Inc.

1

Table of Contents

 About This Document..4
 Audience..4
 Organization..4
 Conventions...5

1 Basic Structure...6

2 Header...7

3 Rule Definition..8

4 Rule Names and Tokens...9

5 Blank Spaces and Cases...11

6 Comments...12

7 Phonetic Spelling..13

8 Alternatives and Weights...16

9 Priority Parentheses...17

10 Option Brackets..18

11 Repetition Brackets..19

12 Special Rules...21

13 Tags..22
13.1 Global Tags..23
13.2 Rule Variables...23
13.3 Syntax for Variables...24
13.4 Default Assignment...25

14 Vocabulary Size..26

2

15 Sample Grammars...27

 Appendix: List of Text Grammar Error Codes...28

3

About This Document
Vestec's Automatic Speech Recognition Engine (VASRE) is a speaker-independent speech recognition
engine that supports a distributed architecture of servers and clients. VASRE works for Windows,
GNU/Linux, and Open Solaris platforms to process an audio file or stream from external sources, such
as telephone systems. The grammar can be built simply, with a list of keywords or pronunciations to be
recognized, or with a more sophisticated industry standard.

This guide explains the syntax of VASRE text grammars, which is based on Speech Recognition
Grammar Specification (SRSG) version 1.0 and Semantic Interpretation for Speech Recognition (SISR)
version 1.0.

Audience
This guide is intended for speech application developers who are writing text grammars for specific
recognition purposes.

Organization
This guide is organized as follows:

➢ Section 1 outlines the basic structure of text grammars.

➢ Section 2 explains the syntax of grammar header.

➢ Section 3 explains the definition of grammar rules.

➢ Section 4 presents the format of rule names and tokens.

➢ Section 5 explains how white spaces, tabs, and new lines work as field delimiters and how the
case of grammar text matters.

➢ Section 6 explains how to add comments to text grammars.

➢ Section 7 describes how to specify the pronunciations of user-defined tokens.

➢ Section 8 explains the syntax of alternative operators.

➢ Section 9 explains the syntax of priority parentheses.

➢ Section 10 explains the syntax of option brackets.

➢ Section 11 explains the syntax of repetition brackets.

➢ Section 12 introduces special rules predefined for special recognition purposes.

➢ Section 13 explains how to append tags to tokens or sub-rules of text grammars.

➢ Section 14 explains how the vocabulary size of a text grammar is counted.

➢ Section 15 introduces sample grammars.

➢ Appendix: List of Text Grammar Error Codes lists the error codes related to the syntax of text
grammars.

4

Conventions
Guides for VASRE use the following conventions:

➢ Bold Arial represents user utterances, recognized strings, and semantic results.

➢ Courier New represents file names, directory names, command line strings, and file contents.

➢ Italic text represents types, tokens, keywords, variables, and functions.

➢ Underlined text represents menu strings or texts in graphical user interface.

➢ Italic Courier New represents values replaced by you. For example, YYYY-MM-DD may
represent a date in the year-month-day format.

➢ A paragraph starting with N.B. represents critical information or warning.

➢ For abbreviated terms, both singular and plural are spelled the same. For example, RM
represents both resource manager and resource managers.

5

1 Basic Structure
The format of the VASRE grammar can be either text or binary. A grammar developer starts grammar
development by writing a text grammar. The text grammar describes which words, phrases, or sentences
should be matched to the input speech. If the text grammar is syntactically correct, the binary grammar
can be generated via the compilation of the text grammar. Both text and binary grammars can be added
to the server; however, it is a better strategy to add binary grammars because adding text grammars
forces the server to compile them, which will consequently degrade the recognition speed.

VASRE supports the syntax of text grammar based on SRGS version 1.0 and SISR version 1.0, which
are W3C standards. Visit W3C website for more details on SRGS and SISR. The VASRE Standard
Edition (SE) contains eight sample text grammars for your reference. See Section 15 or check the
grammar files in /opt/VestecASRE/Samples/Grammars/ directory for GNU/Linux and
VestecASRE\Samples\Grammars\ for Windows.

The text grammar comprises two parts: header and rule definitions. The header has one or more lines
declaring grammar version, language, root rule, and tag formats while each of the rule definitions
describes which combination of words or sub-rules the rule should be matched to.

Consider the following example:

#ABNF 1.0; // header line 1
root $Yesno; // header line 2
$Yesno = $Yes | $No; // rule definition 1
$Yes = yes [please]; // rule definition 2
$No = no [thanks]; // rule definition 3

The first two lines comprise the header while the last three lines are rule definitions.

Header declarations and rule definitions cannot be combined. That is, a header declaration must not lie
amongst rule definitions.

6

2 Header
The header must start with a self-identifying header shown below:

#ABNF 1.0;

The number followed by the semi-colon represents the ABNF version number. Only version 1.0 is
supported at this point. You may optionally specify character encoding after the version number. Only
US-ASCII is supported as illustrated below:

#ABNF 1.0 US-ASCII;

Root rule declaration may follow the self-identifying header. It is highly recommended to declare the
root rule, which acts as the entry point of speech recognition. The root rule declaration is composed of
the keyword root, the root rule name, and a semicolon. If the root rule is not declared, the root rule is
automatically generated as the alternative of all the rules defined in the grammar. In the following
example, the root rule will be internally generated as an alternative of $Yes and $No and hence matches
yes, yes please, no, and no thanks.

#ABNF 1.0;
$Yes = yes [please];
$No = no [thanks];

Within the grammar header, you may also declare language, mode, and tag format. For language, you
can declare either of two identifiers, en or en-us, which identically represent US English. For mode, you
can declare voice only. For tag format, you can declare <semantics/1.0>, <semantics/1.0.2006>,
<semantics/1.0-literals> or <semantics/1.0.2006-literals>. The first two indicate that the tags in the
grammar follow Semantic Interpretation (SI) script format while the last two represent SI string literals
format. Other tag formats are not supported at this point. If the tag format declaration is missing from the
grammar header, SI string literals format will be used.

Note that language and mode declarations are optional because VASRE supports only one language and
one mode at this point. That is, the following two grammars are identical.

#ABNF 1.0;
language en-us;
mode voice;
root $yes;

$yes = yes [please];

 #ABNF 1.0;
root $yes;

$yes = yes [please];

Other standard SRGS declarations such as base URI, pronunciation lexicon, and tag are not supported at
this point.

7

3 Rule Definition
A rule definition associates the rule name with the rule description, which represents what sequences of
words, sub-rules, and tags can be matched to a user utterance. The rule definition comprises the rule
name, assignment operator (=), rule description, and a semicolon. The rule name may follow the scope
keyword public or private. However, this is meaningless since the current version of VASRE does not
support external rule reference.

The rule used as a sub-rule of a certain rule must be defined somewhere within the same grammar file.
For example, the following example grammar is wrong because the definition of $animal is missing:

#ABNF 1.0;
root $root;
$root = $animal;

The recursive definition of rule(s) is not supported. For example, the following two grammars are
syntactically wrong:

#ABNF 1.0;
root $root;
$root = $root one; // error

 #ABNF 1.0;
root $root;
$root = $a;
$a = $b two;
$b = three $a; // error

8

4 Rule Names and Tokens
The rule name must start with a dollar-sign character $. The string following the dollar sign must be a
combination of alphabetical and numerical characters and underscores starting with an alphabetical
letter. For example, $animal and $rule_1 are valid rule names, but $1st and $rule%2 are not. The
maximum allowed length of a rule name is 64.

A token is the part of a text grammar that defines one or more words that can be matched. All the fields
other than rule names, tags, and operators in the rule definition part delimited by white spaces are
tokens. Alphabetical letters, apostrophes, quotation marks, hyphens, underscores, and periods can be
used to compose a token string, but a numerical character cannot. A token doesn't need to start with an
alphabetical letter, but must contain at least one alphabetical letter. Also, the adjacency of the following
letters is not allowed: apostrophes, quotation marks, hyphens, and underscores.

Normally, a token comprises a single word. However, you can combine multiple words to build a token
using quotation marks, hyphens, underscores, or periods. For example, San Francisco represents two
tokens delimited by the white space while “San Francisco”, San-Francisco, San_Francisco, and
San.Francisco represent a single token.

N.B. Note that quotation marks, hyphens, underscores, and periods never affect the pronunciations of the
token. For example, a-b and company.com are not pronounced a dash b and company dot com but
pronounced a b and company com, respectively.

Merging multiple words into a single token has two advantages. First, a token is regarded as the
minimum unit of the grammar during speech recognition stage and you will have a single confidence
score for each token. For example, consider the following two grammars representing the alternatives of
four names (See Section 8 for further details on alternative operators):

#ABNF 1.0;
root $name;
$name = madison smith
 | alex johnson
 | tyler williams
 | landon jones
 ;

 #ABNF 1.0;
root $name;
$name = "madison smith"
 | alex-johnson
 | tyler_williams
 | landon.jones
 ;

If madison smith was recognized for the grammar on the left-hand side, two confidence scores will be
output, one for each of madison and smith. On the other hand, the grammar on the right-hand side
will output a single confidence score for all of the four names listed. This is useful when you have a long
list of short keywords to be recognized and want to use the corresponding single confidence score in
your application.

The second advantage is that if the grammar represents the alternatives of short keywords, making each
keyword a single token yields better recognition results than just enumerating them. Recall the above
two example grammars and assume that they enumerate 100 names instead of four. Then, the right-hand
side grammar will have slightly better recognition performance than the left-hand side one, particularly
when the grammars are tested with non-native speakers. Therefore, it is highly recommended to
represent the grammar as alternatives of single tokens if you will expect your system to recognize one
amongst many short keywords.

The word-merging characters (except double quotation marks) appear in the recognition results. For
instance, recall the above example grammar on the right-hand side. All the possible recognition results

9

from the grammar are madison smith, alex-johnson, tyler_williams, and landon.jones. Note also that a
token delimited by quotation marks takes a white space normalization step, which replaces successive
white spaces and tabs with a single white space and strips off white spaces at the beginning and end. For
example, all of the following tokens will appear as madison smith in the recognition outputs:

“madison smith”, “madison smith”, “ madison smith ”.

In some situations, it is onerous to list all the possible phrases to be recognized as single tokens. For
example, suppose that we were to write a grammar recognizing two-digit numbers. Using the repetition
operator that will be introduced in Section 11, the grammar can be written simply as follows:

#ABNF 1.0;
root $root;
$root = $digit<2>;
$digit = one|two|three|four|five|six|seven|eight|nine|zero;

To improve the recognition performance, you may attempt to enumerate all of the 100 possible phrases
as single tokens. But, this task will be very tedious and mistakes could easily be made. Instead, you
could write the grammar using repetition operators and make the grammar compiler enumerate all the
possible phrases represented by the grammar as single tokens using the -kwd option. See Section 1.4 or
2.4 of Administration Guide for further details.

N.B. If the -kwd option is used when compiling the grammar, weights (See Section 8) and tags (See
Section 13) in the text grammar will be ignored.

Apostrophes are another special character that can be used for token strings. Note that apostrophes are
used to represent some common English words, not to merge multiple words into a single token. For
example, the pronunciation of can't will be correctly generated as k ae n t while the pronunciation of
can_t will be k ae n t iy., which sounds like candy. This is because can_t represents a merged token of
can and t.

Other characters, such as numerical, cannot be used for token strings. For example, 1, 22, dog@home,
and hundred% are unacceptable tokens. Use one, twenty two, dog at home, and hundred percent instead.
Note also that the length of a token is limited to 64.

10

5 Blank Spaces and Cases
The user may use as many blank spaces, new lines, or tabs between two fields in rule definitions as
desired. For example, the following two grammars are identical:

#ABNF 1.0;
root $root;
$root = one
 | two
 | three;

 #ABNF 1.0;
root

$root;
$root = one | two | three;

Note that a new line will be regarded as a white space while processing the rule definition. For example,
the rule $root in the following example represents a token of two words by and pass, not a single word
bypass.

#ABNF 1.0;
ROOT $root;
$root = by
pass;

The grammar text is case-insensitive except for rule names. For example, the following two grammars
are equivalent to each other:

#ABNF 1.0;
root $root;
$root = one|two|three;

 #ABNF 1.0;
ROOT $root;
$root = oNe|TWo|thrEE;

Tokens are converted into lower case internally. For the second grammar above, if one is recognized,
you will have one as the recognition output instead of oNe.

A rule name is case-sensitive. For example, $rule, $Rule, and $RULE are different from one another and
the following grammar is syntactically wrong:

#ABNF 1.0;
root $root;
$ROOT = one|two|three;

11

6 Comments
Both C and C++ style comments are allowed in the text grammar as illustrated below:

#ABNF 1.0;
/*
 * This grammar is for digit recognition
 */
ROOT $root;
$root = zero // "oh" is not allowed
 |one|two|three|four|five|six|seven|eight|nine;

The commented sections will be ignored during grammar compilation.

12

7 Phonetic Spelling
Within the text grammar, you can specify pronunciations of a user-defined token. This convention called
phonetic spelling can be used when you wish to define the pronunciations of a certain token without
relying on the auto pronunciation feature of GramGen. See Section 1.4 or 2.4 of Administration Guide
for further details.

The phoneme symbols listed below can be used for US-English phonetic spelling:

Phoneme Example Transcription Phoneme Example Transcription Phoneme Example Transcription

aa car k aa r f father f aa dh er p pop p aa p

ae bat b ae t g gag g ae g r rerun r iy r ah n

ah butter b ah t er hh hockey hh aa k iy s score s k ao r

ao ought ao t ih it ih t sh share sh eh r

aw count k aw n t iy clean k l iy n t total t ow t ah l

ay bite b ay t jh judge jh ah jh th theme th iy m

b bob b aa b k kick k ih k uh book b uh k

ch church ch er ch l lily l ih l iy uw two t uw

d dad d ae d m mom m aa m v very v eh r iy

dh they dh ey n none n ah n w we w iy

eh bet b eh t ng sing s ih ng y yet y eh t

er bird b er d ow boat b ow t z zoo z uw

ey sale s ey l oy boy b oy zh measure m eh zh er

Besides 39 phoneme symbols listed above, you may use sil, which represents silence. Inserting sil will
be helpful particularly when you expect a short pause or silence within the recognized speech.

A string embraced within the pair of quotation marks and curly brackets describes the pronunciation and
the corresponding token. The string starts with a list of phonemes separated by white spaces followed by
a colon and the token string. Consider the following example:

#ABNF 1.0;
root $company;
$company = "{v eh s t eh k:vestec}";

If a speech represented by v eh s t eh k is recognized with this grammar, vestec will appear as the
corresponding recognition output.

Several basic rules of phonetic spellings are as follows:

1. No white spaces are allowed between the quotation mark and curly bracket.

2. The token must be specified. That is, you may not specify the pronunciation without specifying
the matched token.

For example, the following two grammars are syntactically wrong:

13

#ABNF 1.0;
root $root;
$root = " {v eh s t eh k:vestec}"; // error

#ABNF 1.0;
root $root;
$root = "{v eh s t eh k}"; // error

The token string representing a single token may comprise multiple words. You may use white spaces,
double quotation marks, hyphens, underscores, and periods for the token string. Regardless how many
words are used for the token name, they will be regarded as a single token. For example, the following
two grammars identically represent a single token “a vestec stock”:

#ABNF 1.0;
root $root;
$root = "{ah v eh s t eh k s t aa k:a vestec stock}";

#ABNF 1.0;
root $root;
$root = "{ah v eh s t eh k s t aa k:"a vestec stock"}";

The strings representing phoneme sequence and token name go through white space normalization. For
example, the following two grammars are identical:

#ABNF 1.0;
root $root;
$root = "{ah v eh s t eh k s t aa k:a vestec stock}";

#ABNF 1.0;
root $root;
$root = "{ah v eh s t eh k s t aa k
 : a vestec stock }";

Never attempt to use phonetic spelling as a part of a token comprising multiple words because it might
be confusing. The grammar will compile, but in a way different from what you intended. Consider the
following example:

#ABNF 1.0;
root $root;
$root = "a "{v eh s t eh k:vestec}" stock";

With this grammar, the author intended to recognize a token pronounced a vestec stock. But, the
grammar compiler understands this grammar as the sequence of two tokens “a ” and “ stock”, where v
eh s t eh k:vestec is the tag statement following “a ”. See Section 13 for further details. Likewise, the
following grammar can be understood in two different ways: a single token saying vestec com or
double tokens of vestec and .com. The grammar compiler follows the latter way.

14

#ABNF 1.0;
root $root;
$root = "{v eh s t eh k:vestec}".com;

If you want to define multiple pronunciations of a user-defined token, you can separate them by commas
as illustrated in the following example:

#ABNF 1.0;
root $Name;
$Name = "{k ae r ah l ay n, k ae r ah l ih n:caroline}" miller;

To see if a certain word is contained in the pronunciation dictionary, use the pronunciation generator. If
you compile a grammar containing a word whose pronunciation is not defined, the grammar compiler
will output an error message. However, you may use the -ap option to make the grammar compiler
guess the pronunciation. See Section 1.4 or 2.4 of the Administration Guide for further details.

It is not recommended to redefine the pronunciation of a word that already exists in the dictionary. If you
do this, the original pronunciation will be ignored within the scope of that text grammar. Consider the
following example:

#ABNF 1.0;
root $ROOT;
$ROOT = "{y eh s sil p l iy z:yes}";

This grammar maps the phoneme sequence y eh s sil p l iy z to yes. The original pronunciation of yes will
be ignored by this grammar. However, if yes appears somewhere in the grammar as in the following
example, both y eh s and y eh s sil p l iy z will be used as pronunciations of yes:

#ABNF 1.0;
root $ROOT;
$ROOT = $yes|$yesplz;
$yes = yes;
$yesplz = "{y eh s sil p l iy z:yes}";

The following grammar is even more problematic. It will represent yes yes, which can be pronounced
in four different ways: ae ae, ae y eh s, y eh s ae, y eh s y eh s.

#ABNF 1.0;
root $ROOT;
$ROOT = yes "{ae:yes}";

15

8 Alternatives and Weights
The basic operator used for rule description is an alternative operator, which expands a rule into two or
more sequences of words or sub-rules. A vertical bar is used as the alternative operator. For example, the
following grammar is supposed to recognize one, two, or three.

#ABNF 1.0;
root $root;
$root = one|two|three;

An empty alternative is not allowed. That is, the following three grammars are syntactically wrong:

#ABNF 1.0;
root $root;
$root = |two|three; // error

 #ABNF 1.0;
root $root;
$root = one||three; // error

A weight can be optionally paired with an alternative. A weight is a simple positive floating point value
without an exponential symbol. An alternative with the weight of 1.0 has the same effect to an
alternative with no weight. A weight greater than 1.0 positively biases the alternative while a weight less
than 1.0 negatively biases the alternative.

Use a pair of slashes to specify the weight of an alternative as shown in the following example:

#ABNF 1.0;
root $root;
$root = /2.0/ coffee | /1./ tea | /0.5/ $others;
$others = cookie | /.5/ donut;

A weight can be assigned to a sub-rule. If this is the case, the weight is multiplied by the alternatives the
sub-rule defines. That is, the above example grammar is equivalent to the following:

#ABNF 1.0;
root $root;
$root = /2.0/ coffee | /1./ tea | /0.5/ cookie | /.25/ donut;

Note that you should use a reasonable range for the weight. If the weight is greater than 1000 or less than
0.001, it will be set to 1000 or 0.001, respectively, by the grammar compiler. That is, the weight of
1000000000 has the same effect of the weight of 1000.

N.B. If the -kwd option is used when compiling the grammar, weights and tags (See Section 13) in the
text grammar will be ignored.

16

9 Priority Parentheses
You may specify priority in rule description using parentheses. For example, the following two
grammars are identical:

#ABNF 1.0;
root $root;
$root = give me (bills | coins) please;

#ABNF 1.0;
root $root;
$root = give me bills please
 | give me coins please;

Priority parentheses embracing an empty string will be ignored.

17

10 Option Brackets
You may specify optional words or sub-rules in a rule description using square brackets. For example,
the following two grammars are identical:

#ABNF 1.0;
root $root;
$root = yes [please];

 #ABNF 1.0;
root $root;
$root = yes | yes please;

Option brackets embracing an empty string are not allowed.

18

11 Repetition Brackets
You may specify repetition in rule description using angle brackets. Write the number of repetitions, or
the minimum and maximum numbers of repetitions separated by a hyphen within the brackets. For
example, the following two grammars are identical:

#ABNF 1.0;
root $root;
$root = well <0-2> umm <2>;

 #ABNF 1.0;
root $root;
$root = umm umm
 | well umm umm
 | well well umm umm;

The minimum number of repetitions must be no less than zero, and there exists no limitation on the
maximum repetition number. If your grammar allows infinite repetition of a certain rule or terminal,
specify the minimum repetition number only using a hyphen as shown in the following example:

#ABNF 1.0;
root $root;
$root = wow <1->;

However, omitting the minimum repetition number is not allowed:

#ABNF 1.0;
root $root;
$root = wow <-10>; // error

If the repetition brackets follow priority parentheses, the grammar described within the priority
parentheses are repeated. For example, the following grammar represents 4 to 6-digit numbers:

#ABNF 1.0;
$root = (zero|one|two|three|four|five|six|seven|eight|nine) <4-6>;

You may give a weight to repetition. If the weight is given in front of the repeated words or sub-rules,
the weight will be identically applied to all the phrases represented by the repetition. For example, the
following grammar is biased towards wow and wow wow with the weight of two.

#ABNF 1.0;
root $root;
$root = /2./ wow <1-2> | oh;

Note that giving weight to the words or sub-rules repeated has no effect if there are no alternatives. The
following two grammars are equivalent from the server's point of view:

#ABNF 1.0;
root $root;
$root = (/.7/ wow) <1-2>;

 #ABNF 1.0;
root $root;
$root = (/2/ wow) <1-2>;

19

If the weight is given next to the number of repetitions, it would indicate the probability of successive
repetition of the words or sub-rules. For this case, weight must be in the range of 0.0 to 1.0. For
example, the following grammar indicates that the chance of matching wow wow is 70% and the
chance of wow wow wow is 49%.

#ABNF 1.0;
root $root;
$root = wow <1-3 /.7/>;

If maximum number of repetition is not specified, the probabilities decay exponentially.

As a summary, consider the following grammar:

#ABNF 1.0;
root $root;
$root = /2./ wow <1- /.5/>) | oh;

This grammar is positively biased towards the repetition of wow with the weight of two and the chance
to match additional wow will be decayed with the probability of 0.5.

20

12 Special Rules
Three rule names $NULL, $VOID, and $GARBAGE are reserved for special recognition purposes. These
rules are so-called special rules, and must not be redefined within a grammar.

$NULL defines a rule that is automatically matched even when nothing was spoken. For example, the
following two grammars are identical:

#ABNF 1.0;
root $root;
$root = yes $NULL please;

 #ABNF 1.0;
root $root;
$root = yes please;

Note that the root rule must not represent $NULL. For example, the following grammar is syntactically
wrong.

#ABNF 1.0;
root $root;
$root = $NULL;

$VOID defines a rule that can never be matched. For example the following two grammars are identical:

#ABNF 1.0;
root $root;
$root = apple | $VOID;

 #ABNF 1.0;
root $root;
$root = apple;

The root rule must not be $VOID.

$GARBAGE defines a rule that may match any speech up until the next sub-rule or word matches. For
example, the following grammar covers every speech starting with yes including yes itself.

#ABNF 1.0;
root $root;
$root = yes $GARBAGE;

Note that neither $NULL nor $GARBAGE will ever appear as a recognition result, even when they match
a part of input speech. When the grammar compiler generates the sentences represented by the grammar
containing special rules, $NULL and $VOID will not appear as a part of the sentences, but $GARBAGE
will. See Section 2.4 or 3.4 of the Administration Guide for further details.

It is not recommended to use $GARBAGE without extensive testing. The capability of $GARBAGE is
limited and it may degrade the overall recognition performance of your speech recognition grammar.

21

13 Tags
Within a text grammar, you may leave tag statements within curly brackets so that the SI processor can
use it to generate a semantic result. The tag statement surrounded by curly brackets is called a tag.
Following SISR Version 1.0, the tag statement can be written in two formats: SI script and SI string
literals. SI script is a source code of European Computer Manufacturers Association (ECMA) program
assigning the result of evaluation to the rule variable that the tag is subject to. SI string literals specify a
string comprising one or more characters that will be assigned to the rule variable. The choice of tag
format is specified by tag declaration in the header. See Section 2 for further details.

Based on tags in the rule expansion, the recognition server generates a logical parsing, which describes
the hierarchy of matched rules and the words and tags therein. The logical parsing contains all the
required information for generating semantic result. The server outputs the logical parsing as part of the
recognition result so that the client program can invoke the SI processor with it. The data flow between
the recognition server and SI processor is illustrated below. See Section 2.3, 2.4, and 6 of Application
Developer's Guide for further details.

N.B. If the -kwd option is used when compiling the grammar, weights (See Section 8) and tags in the
text grammar will be ignored. In this section, we assume all the example grammars were compiled
without -kwd option.

See the following example:

#ABNF 1.0;
tag-format <semantics/1.0-literals>;
root $yesno;
$yesno = yes {TRUE} | no {FALSE};

Since tag-format <semantics/1.0-literals>; is declared, this grammar follows SI string literals format. If
yes is recognized, the logical parsing will be

[$yesno[yes, {TRUE}]]

This logical parsing assigns the string TRUE to the rule variable of $yesno, which is the root rule of this
grammar. So, TRUE will be returned as the corresponding semantic result. The equivalent grammar with
SI script format can be written as follows:

22

Semantic Result

ASR output
 (text, score)

SI
Processor

Server
Grammar

Speech
Input Logical

Parse

Server side Client side

#ABNF 1.0;
tag-format <semantics/1.0>;
root $yesno;
$yesno = yes {out = "TRUE";} | no {out = "FALSE";};

The logical parsing from this grammar will be:

[$yesno[yes, {out = “TRUE”;}]]

The script out = “TRUE”; assigns the string literal “TRUE” to the rule variable $yesno.

VASRE version 1.1 fully supports SISR version 1.0. See SISR document available on W3C website for
full descriptions on SISR. The rest of this section summarizes the key points of SISR with some
examples.

13.1Global Tags
As a part of the grammar header, global tags can be declared. The global tags will be added to the
beginning of the logical parsing, so that it could be used while evaluating the tag statements in rule
expansions.

Consider the following example:

#ABNF 1.0;
tag-format <semantics/1.0>;
root $yesno;
{var t = "TRUE"; f = "FALSE";};
$yesno = yes {out = t;} | no {out = f;};

If yes is matched, the logical parsing will be:

[{var t = “TRUE”; f = “FALSE”;}, $yesno[yes, {out = t;}]]

This logical parsing will output the semantic result of “TRUE”.

13.2Rule Variables
Three variables are mapped to every rule in the grammar:

➢ Rule variable named out

➢ Text variable named text

➢ Score variable named score

The rule variable out holds semantic value of the rule. The type of the rule variable can be one of string,
integer, double, boolean, object, and array. You don't need to declare the type of the rule variable. It will
be automatically decided based on the value assigned to the rule variable.

Rule variable may have one or more properties (child variables). The property can be individually
accessed by out.identifier, where identifier is the name of the property. For example, out.pizza represents
the pizza property of the rule variable. Reserved words of ECMAScript such as for must not be used as
property names. If a rule variable has properties, its type will be set to object.

23

text of a rule holds the sub-string in the utterance that is governed by the corresponding rule. score holds
a value that is related to the confidence probability of the corresponding rule. Note that both text and
score are read-only from SI tag's point of view.

The rule variable of the root rule is the semantic result of a grammar.

13.3Syntax for Variables
Every SI script in tags has access to an object variable named rules that has a property holding the rule
variables value of rules. The rule variable associated to a rule reference is identified by rules.rulename,
where rulename is the name of the rule. Individual properties of a rule variable can be identified by
rules.rulename.identifier, where identifier is the name of the property.

The rule variable for the latest rule reference that was used in the expansion matching the utterance up to
the position of the SI tag can also be referenced through rules.latest(). Rule variables of the current rule
and referenced rules can be evaluated and assigned to. Special rules such as $NULL, $VOID, and
$GARBAGE cannot be evaluated.

The access to the text and score variables of rules are available in the form of the followings:

➢ meta.rulename.text

➢ meta.latest().text

➢ meta.current().text

➢ meta.rulename.score

➢ meta.latest().score

➢ meta.current().score

Note again that these variables are all read-only.

For example, consider the following example:

#ABNF 1.0;
language en-US;
tag-format <semantics/1.0>;
root $drink;
$drink =
 {rules.size="medium"} $size<0-1> $kind
 {out.drinksize=rules.size; out.type=rules.kind;}
 ;
$size = small | medium | large;
$kind = coke | pepsi;

The rule drink has a read and write access to the rule variables of referenced rules size and kind. The SI
tags declare two properties for the rule variable of drink: drinksize and type, which are set to the rule
variable values of size and kind.

24

13.4Default Assignment
If no SI tag is attached to the expansion of a certain rule that is used to match the utterance, then the
value of the rule variable out for the rule is determined as follows. If there are no rule references in the
parsing, the value of meta.current().text is automatically copied into the rule variable (which then
becomes of type string). Otherwise, the value of the rule variable of the last rule reference in the parsing
(which is named rules.latest()) is automatically copied into the rule variable.

For example, the value of the rule variable $drink in the following example is either coke, pepsi, or coca
cola.

$drink = coke | pepsi | coca cola;

For the following example, however, rules.drink is either coke or pepsi while meta.drink.text is one
amongst coke, pepsi, or coca cola.

$drink = coke | pepsi | coca cola {coke};

25

14 Vocabulary Size
The vocabulary size of the VASRE is limited to 500, which means the total vocabulary size of the
grammars added to the VASRE grammar list may not exceed 500. Therefore, you need to know how
vocabulary size is counted for a given text grammar to maintain total vocabulary size below the limit.

The vocabulary size of a grammar is the summation of vocabulary sizes of rules defined in the grammar.
The vocabulary size of a rule is the number of word segments separated by sub-rules, alternative
operators, parentheses, and brackets. Note that the vocabulary size has nothing to do with the actual
number of the words appearing in the recognition result.

See the comments in the following sample grammar to be familiar with the counting method described
above.

#ABNF 1.0;
root $vs;
$vs = $vs1 | $vs2 | $vs3 | hello there; // vocabulary size: 1
$vs1 = yes [please] | no [thanks]; // vocabulary size: 4
$vs2 = "{g uw g l:google}" please; // vocabulary size: 1
$vs3 = give me (bills | coins) please; // vocabulary size: 4

The total vocabulary size of the above sample grammar is 10.

26

15 Sample Grammars
The VASRE SE comes with eight sample grammars under
/opt/VestecASRE/Samples/Grammars/ for GNU/Linux and
VestecASRE\Samples\Grammars\ for Windows:

1. Date.grm matches a date in Month-Day-Year format. An example of matched utterance is july
the third two thousand eight. This grammar declares the tag format of <semantics/1.0> and
contains SI tags to output a semantic result with three properties: year, month, and day.

2. Digit4to6.grm matches 4- to 6-digit number such as one five six zero, four three three
zero one, and five six eight seven eight nine. This grammar contains SI tags to output a
semantic result of type string representing 4- to 6-digit numbers.

3. Digit5.grm matches 5-digit numbers: three six four nine one. This grammar contains SI
tags to output a semantic result of type string representing 5-digit numbers.

4. Money.grm matches an amount of money from 1 cent to 100 dollars and 99 cents: five
dollars and fifty cents, hundred dollars, six cents. This grammar contains SI tags to
output a semantic result of type double representing the dollar amount.

5. Name.grm matches 100 American names such as alex johnson, jackson clark.

6. Number.grm matches a number between 0 and 999,999: forty six, fifty two sixty three.
This grammar contains SI tags to output a semantic result of type integer.

7. Time.grm matches time of day: twelve o'clock in the morning, half past twelve, three
a m.

8. Yesno.grm matches short phrases representing yes or no: yes please, sure, no thanks,
absolutely not. This grammar declares the tag format of <semantics/1.0-literals> and contains
SI tags to output a semantic result of type string, which can be either TRUE or FALSE.

For further details on each grammar, refer to the comments in .grm files.

27

Appendix: List of Text Grammar Error Codes
The grammar compiler of VASRE outputs an error code if the given grammar has syntax errors. For
example, if the self-identifying header is missing from the text grammar, GramGen will output the
following message:

Loading pronunciation dictionary ...
--- Done.
Preprocessing .grm file ...
--- The grammar must start with self-identifying header "#ABNF 1.0;". (Code: 55)

For this example, 55 is the error code. The error message followed by the error code gives a very basic
description of the error. To obtain more details on the error, refer to this section. The error codes are in a
decimal format and arranged in an ascending order.

N.B. If the error message starts with Internal Error and a colon, the error happened due to defects in the
grammar compiler itself. Please report it with the error code to Vestec if you encounter internal errors.

30: Failed to open .grm file
The grammar compiler could not open the .grm file. Ensure that the .grm file exists and its permission
is correctly specified.

31: .grm file must be a text file
The grammar compiler detected that the .grm file is not an ascii text file. Check whether the .grm file
is a valid ascii text file containing SRGS text. Character encoding other than US-ASCII is not supported.

40: Missing semicolon
A semicolon is missing in the last line of the text grammar.

41: Running comment
Comment is not closed. Check the pair of /* and */. See Section 6 for details.

42: Line is too long
A certain line in the text grammar is too long. The maximum allowed line length is 1022.

43: Running tag
Tag is not closed. Check the pair of { and }.

44: Running phonetic spelling
Phonetic spelling is not closed. Check the pair of “{ and }”.

45: Running token
Token is not closed. Check the pair of “ and ”.

50: Empty grammar file
The grammar file is empty.

51: Vocabulary size overflows
The vocabulary size of the text grammar exceeds the limit 500. See Section 14 to learn how to count the
vocabulary size of a grammar.

52: Special rules as root rule
Special rules $NULL, $VOID, and $GARBAGE must not be declared as the root rule. See Section 12.

53: Root grammar represents $NULL

28

The grammar represents $NULL. A grammar representing $NULL is not allowed for the VASRE
grammar compiler. See Section 12 for details.

55: Missing self-identifying header
The grammar must start with the self-identifying header starting with #ABNF. See Section 2 for further
details.

56: SRGS version is missing
No SRGS version number is found. The self-identifying header keyword #ABNF must be followed by
the SRGS version number 1.0. See Section 2 for further details.

57: SRGS version is not supported
The SRGS version number following #ABNF is not supported by the VASRE grammar compiler. Only
version 1.0 is supported and the self-identifying header must be #ABNF 1.0;. See Section 2 for further
details.

58: Character encoding is not supported
The character encoding specified in the self-identifying header is not supported. Only US-ASCII is
supported. See Section 2 for further details. This error can be also issued when the semicolon is missing
at the end of the self-identifying header.

59: Unknown header keyword
The grammar compiler encountered unknown keywords while processing the grammar header.

61: Phonetic spelling delimiters mismatch
The grammar compiler found a mismatch of phonetic spelling delimiters comprising double quotation
marks and curly braces. Check the pair of the delimiters.

62: Invalid root rule name
Invalid root rule name follows the keyword root. You may encounter this error because a semicolon is
missing at the end of the root rule declaration.

63: Invalid language identifier
Invalid language identifier follows the keyword language. Only en or en-us can be used as language
identifiers. You may encounter this error because a semicolon is missing at the end of the language
declaration.

64: Invalid mode identifier
Invalid mode identifier follows the keyword mode. Only voice can be used as a mode identifier. You may
encounter this error because a semicolon is missing at the end of the mode declaration.

65: Double quotation marks mismatch
The grammar compiler found a mismatch of double quotation marks representing a token comprising
multiple words. Check the pair of the double quotation marks.

66: Base URI is not supported
Base URI is declared, but the VASRE grammar compiler does not support it. See Section 2 for details.

67: Pronunciation lexicon is not supported
Pronunciation lexicon is declared, but the VASRE grammar compiler does not support it. See Section 2
for details.

68: Meta data is not supported
Meta data is declared, but the VASRE grammar compiler does not support it. See Section 2 for details.

69: Weight is not supported
Weights of tokens or sub-rules are not supported within rule definition.

29

70: Root rule declaration in grammar body
Root rule declaration is found after one or more rules are defined. The root rule must be declared before
rules are defined.

71: Missing rule description
A rule definition must comprise a rule name, an assignment operator, and the rule description. The rule
description is missing. See Section 3 for details.

72: Rule redefined
The grammar compiler found multiple definitions of a certain rule. A rule must be defined only once.

73: Missing assignment operator
A rule definition must comprise a rule name, an assignment operator, and the rule description. The
assignment operator is missing. See Section 3 for details.

74: Language identifier is not supported
A language identifier is not supported for the current version of VASRE grammar compiler.

75: No white space follows root
The root rule declaration must comprise the keyword root, a white space, and the root rule name, but no
white space character is found. See Section 2 for details.

76: No white space follows language
The language declaration must comprise the keyword language, a white space, and the language
identifier, but no white space character is found. See Section 2 for details.

77: No white space follows mode
The mode declaration must comprise the keyword mode, a white space, and the mode identifier, but no
white space character is found. See Section 2 for details.

78: No white space follows tag-format
The tag format declaration must comprise the keyword tag-format, a white space, and the tag format
identifier, but no white space character is found. See Section 2 for details.

79: Invalid tag format identifier
Invalid tag format identifier follows the keyword tag-format. Only <semantics/1.0-literals>,
<semantics/1.0.2006-literals>, <semantics/1.0-literals>, and <semantics/1.0.2006-literals> can be
used as tag format identifier. You may encounter this error because a semicolon is missing at the end of
tag format declaration. See Section 2 for details.

80: No white space follows public
No white space is found between the keyword public and rule name.

81: No white space follows private
No white space is found between the keyword private and rule name.

82: Duplicate root rule declaration
The grammar compiler found multiple declarations of the root rule. See Section 2 for details.

83: Duplicate language declaration
The grammar compiler found multiple declarations of the language. See Section 2 for details.

84: Duplicate mode declaration
The grammar compiler found multiple declarations of the mode. See Section 2 for details.

85: Duplicate tag-format declaration
The grammar compiler found multiple declarations of the tag format. See Section 2 for details.

30

86: Special rules are defined
Special rules $NULL, $VOID, and $GARBAGE are reserved and cannot be defined.

87: No matching tag opening brace
The grammar compiler encountered }!}, but there exists no matching {!{.

88: No token
Double quotation marks surround an empty string.

90: Rule description starting with alternative operator
The grammar compiler found a rule description starting with an alternative operator. The alternative
must follow tokens or sub-rules.

91: Rule description ending with alternative operator
The grammar compiler found a rule description ending with an alternative operator. The alternative must
be followed by tokens or sub-rules.

92: Subsequent alternative operators
The grammar compiler found two or more subsequent alternative operators. Tokens or sub-rules must be
inserted between the alternative operators.

94: Missing tag format
Tag format identifier is missing after tag-format keyword. Use one of the following identifiers,
<semantics/1.0>, <semantics/1.0.2006>, <semantics/1.0-literals> or <semantics/1.0.2006-literals>.

95: Invalid global tag
The global tag contains an empty statement or closing tag brace is not found.

100: Invalid phoneme in phonetic spelling
A phoneme symbol used for phonetic spelling is invalid. See Section 7 for the full list of phonemes.

101: Missing token in phonetic spelling
A phonetic spelling must comprise phoneme sequences, a colon, and a token string. The token string is
missing from the phonetic spelling.

102: Missing pronunciations in phonetic spelling
A phonetic spelling must comprise phoneme sequences, a colon, and a token string. The phoneme
sequences are missing from the phonetic spelling.

112: Invalid Token
The grammar compiler expected a token string comprising alphabetical letters, hyphens, underscores,
and periods, but encountered something else. Note that numerical letters and special characters other
than hyphens, underscores, and periods cannot be used as a part of a token string.

113: Token is too long
A token is too long. The maximum allowed length of a token string is 64.

114: Invalid Token
A token contains no alphabetical letter(s). It must contain at least one alphabetical letter.

115: Invalid Token
A token contains subsequent apostrophes, hyphens, underscores, or periods. An apostrophe, hyphen,
underscore, or period must not be followed by another apostrophes, hyphen, underscore, or period.

116: Invalid Token
The token starts with a double quotation mark, but ends with a character other than the double quotation
mark.

31

130: Invalid rule name
Rule name is too short.

131: Invalid rule name
Rule name must start with a dollar sign.

132: Invalid rule name
Rule name must start with a dollar sign followed by an alphabetical character.

133: Invalid rule name
Rule name must start with a dollar sign followed by an alphabetical character. The rest must comprise
alphabetical and numerical characters and underscores. Other character cannot be used as a part of rule
names. You may encounter this error if you miss an assignment from a rule definition. See Section 4 for
further details.

134: Invalid rule name
Rule reference is found in the grammar, but the VASRE grammar compiler does not support it.

135: Invalid rule name
Rule name is too long. The length of a rule name must not exceed 64.

140: Missing root rule definition
The definition of the root rule is missing.

141: Missing rule definition
A rule is used, but its definition is missing.

200: Initialization failed
The grammar compiler failed to load pronunciation dictionary. Ensure agg_en1.bin is under
/opt/VestecASRE/bin/.

250: Pronunciation not found
The pronunciation of the token is not found in the dictionary.

251: Auto pronunciation failed
Auto pronunciation failed to guess the pronunciation of the token.

252: Token has too many pronunciations
The token has more than 100 pronunciations. This may occur when you build a token by concatenating
multiple words and each word has multiple pronunciations. Divide the long token into several pieces to
resolve this error.

271: Too long logical parsing
While the grammar compiler generates the segments of logical parsing, it encountered a too long
segment, which cannot be placed within the binary grammar file. This may happen if too long tags exist
in the text grammar.

480: Weight slash mismatch
The grammar compiler found a mismatch of weight slashes. Check the pair of weight slashes.

481, 485: Missing weight
The grammar compiler found two successive slashes. Place the weight between them.

482, 483: Invalid weight
The format of the weight is wrong. Legal formats are n, n., .n, and n.n, where n is a sequence of one or
more digits.

484: Invalid weight

32

The grammar compiler found a wrong weight. The weight must be a simple positive number.
486: Weight slash mismatch within repetition brackets

The grammar compiler couldn't find the second slash within a repetition bracket. Check the pair of
slashes for weight.

487: Invalid weight
The weight for repetition must be in the range of 0 to 1. Negative weight or positive weight more than 1
is not allowed.

490: Priority parentheses mismatch
The grammar compiler found a mismatch of priority parentheses. Check the pair of priority parentheses.

491: Option brackets mismatch
The grammar compiler found a mismatch of option brackets. Check the pair of option brackets.

492: Repetition brackets mismatch
The grammar compiler found a mismatch of repetition brackets. Check the pair of repetition brackets.

493: Parentheses or brackets mismatch
The grammar compiler found a mismatch of priority parentheses or option brackets. Check the pair of
priority parentheses and option brackets.

495: Tag braces mismatch
The grammar compiler found a mismatch of tag braces. Check the pair of interpretation brackets.

496: No string in tag
Tag braces embrace no string.

497: Wrong place of weight
Weight must precedes a token or a rule to be weighted.

498: Tag statement is too long
Tag statement is too long. The maximum allowed length of a tag statement is 1024.

499: Compiling $GARBAGE with -kwd
If $GARBAGE is used, the grammar cannot be compiled with the -kwd option. Remove the -kwd
option to resolve this error.

500: No string within option brackets
Option brackets embrace no string.

501: Tag statement contains closing bracket
The grammar compiler found a tag statement containing a closing bracket }. You may not use the closing
bracket as a part of the tag statement.

502: Recursive rule definition
The grammar compiler found recursive definition of rule(s), which is not supported by the VASRE
grammar. See Section 3 for further details.

503: Tag followed by weight
Tag may not be followed by weight. Move the location of weight next to a token or a rule.

510: No expression to be repeated
The grammar compiler found repetition brackets following no expression. The repetition brackets must
follow tokens or sub-rules to be repeated.

513: Repetition brackets follow alternative operator

33

The grammar compiler found an alternative operator followed by repetition brackets. The repetition
brackets must follow tokens or sub-rules to be repeated.

515: Adjacent repetition brackets
The grammar compiler found two or more subsequent repetition brackets. The repetition brackets must
follow tokens or sub-rules to be repeated.

516: Repetition brackets follow option brackets
The grammar compiler found option brackets followed by repetition brackets. The repetition brackets
must follow tokens or sub-rules to be repeated.

520: Invalid string within repetition brackets
Repetition number must be specified within repetition brackets, but an invalid string is given.

521: No minimum repetition number
Minimum repetition number is missing within repetition brackets. Maximum repetition number is
optional, but minimum repetition number must be specified.

523: Invalid minimum repetition number
Invalid minimum repetition number is found within repetition brackets. The minimum repetition number
must be no less than zero.

524: Invalid maximum repetition number
Invalid maximum repetition number is found within repetition brackets.

525: Invalid maximum repetition number
Invalid maximum repetition number is found within repetition brackets. Maximum repetition number
must be no greater than 16.

526: Invalid repetition numbers
The minimum repetition number within repetition brackets is greater than the maximum repetition
number.

527: No number within repetition brackets
No repetition number is given within repetition brackets.

528: Invalid minimum repetition number
Invalid minimum repetition number is found within repetition brackets. The minimum repetition number
is too big.

540: Multiple assignment operators in rule definition
The grammar compiler found multiple assignment operators in a single rule definition. This generally
happens when a semicolon of a rule definition is missing.

555: Root rule represents $VOID
The root rule of your grammar represents $VOID, which cannot be used as a speech recognition
grammar. See Section 12 for further details.

560: Same token with different tags
A rule defined in your grammar represents the alternative of the same token or sub-rule, but they have
different tags. Remove one of them to resolve this error.

601: Failed to open output file
Sentence generator failed to open output text file.

34

	About This Document
	Audience
	Organization
	Conventions

	1 Basic Structure
	2 Header
	3 Rule Definition
	4 Rule Names and Tokens
	5 Blank Spaces and Cases
	6 Comments
	7 Phonetic Spelling
	8 Alternatives and Weights
	9 Priority Parentheses
	10 Option Brackets
	11 Repetition Brackets
	12 Special Rules
	13 Tags
	13.1 Global Tags
	13.2 Rule Variables
	13.3 Syntax for Variables
	13.4 Default Assignment

	14 Vocabulary Size
	15 Sample Grammars
	Appendix: List of Text Grammar Error Codes

